18.453 Lecture 1

Lecture Plan: Intros

- Logistics
- ABout THE TopIC
- Breakout rooms to work one examples
Join course on explain.mit.edu!
INTROS:
ABOUT ME: - COLE FRANKS
- pis call me Cole
- Postdoc in applied math
- striven theoretical computer science

ABouT you: PIs say your

- name
- major in english.
- year not numbers)
- Draw yourself in explain. mit. ed main room
Logistics:
- lectures, recorded attend. encourage.
- one OH w I1-12:30, another $T B A$.
- Si-weebly pret. 40%

$$
\begin{array}{ll}
1 \text { quiz. } & 25 \% \\
1 \text { final } & 35 . \%
\end{array}
$$

- Pret in groups: non-mandatora write-ups must be done individualler.

WHAT IS COMBINATORIAL OPTIMIZATION?

- untie calculus, X usually finite es. $\{0,1\}^{n}$ or discrete e.g.t.
- However, even when X finite, to hard to check all eft: : $\{0,1\}^{n} \mid=2^{n} \ldots$...

Famous example: Travelling Salesman problem (TSP) Given pairwise distances between n cities, what's shortest route to visit than all?

* possible trips : $n!\gg 2^{n}$

Thus, we need better Techniques than
simply trying all possibilities.

- Frequently this is just impossible. eeg. TSP is "NP hard".
- We still get lucky for many combinatorial structures!
- Matching
- Hows/ cuts
- TREES SMATROIDS
- submodularity
- Main tool: linear programming. (LP) egg.

$$
\begin{array}{cc}
\text { max } & 2 x+3 y \\
\text { subject } & x+y \leqslant 2 \\
\text { to } & x-y \leqslant 4 \\
& x \geqslant 0 \\
y \geqslant 0 .
\end{array}
$$

- Even when we arent lucky, LP and other tools can help approximate (e.g.TSP).

Example: Matching

- Graph: $G=(\underset{\uparrow}{ }, E)$ vertices edges
eq.

$$
\begin{aligned}
& V=\{1,2,3,4\} \\
& E=\{\{1,2\},[3,4\},\{1,3\},\{1,4\}\}
\end{aligned}
$$

Depicted

$$
c=
$$

- Matching: $M \leq E$ disjoint set of edges.

- perfect matching: M includes all vertices (G above has perfect matching).

ACTIVITY 1:

Massachusetts Institute of Technology
18.453: Combinatorial Optimization

Instructor: Cole Franks Notes: Michel Goemans and Web Brady) February 15, 2021

Matching illustration

A matching M in a graph $G=(V, E)$ is a set of edges with no endpoints in common. In the graph below, find a matching of maximum size.

How can you convince someone that the matching you found is indeed of maximum cardinality?

Do this w/ your breakout
room in explain. mit.edu

Matching $w / n-2$ vertices

Key Theme: Duality
loosely: The SIMPLE obstructions are the ONLY obstructions

- What OBSTRUCTS matching?
- parity

- parity

This is the only k ind of obstruction?

Tutte's theorem: If $u \leq v$, et
$o(u)=\{\#$ odd connected components if u is removed?

Then

$$
\begin{aligned}
& \text { Then } \\
& \max \left|\begin{array}{l}
\text { vertices } \\
\text { matchingin }
\end{array}\right|=\min _{u \leqslant v}|v|+|u|-o(u) \text {. }
\end{aligned}
$$

Eventually weill show how duality leads to efficient alogs for matching!

Spanning Tree Game
A spanning tree T in a graph $G=(V, E)$ is a set of edges without any cycles that connect all vertices together. The spanning tree game is a 2-player game. Each player in turn selects an edge. Player 1 starts by deleting an edge, and then player 2 fixes an edge (which has not been deleted yet); an edge fixed cannot be deleted later on by the other player. Player 2 wins if he succeeds in constructing a spanning tree of the graph; otherwise, player 1 wins.

Which graphs have a winning strategy for player 1? Which graphs have a winning strategy for player 2 ?

For this graph with 16 vertices and 30 edges, which player has a winning strategy?
 group. graph w/ your

-Tryto answer *.

another example:

CASE 1: $\exists 2$ disjoint
spanning trees $A, B \in G$.
(lain! P^{\prime} wins!

- when PI cuts from A, P_{2} adds edge from B to A so A is still spanning, tree. "Exchange property"
- A, B will be disjoint except fixed edges.
- in the end, $A=B$ is spanning tree remaining.

CASE 2: no 2 disjoint spanning trees.
claim: P2 wins!
Duality: simple obstruction for 2 drift spanning trees.

4 parts, ole

$$
2 \cdot(4-1)-1=5
$$

edges between
them. But a 5 panning tree would have $\geqslant p-1$ edges between p parts \& 2 spanningtrees would have $2(p-1)$ edges?

Thus, partition into p parts $w /<2(p-1)$ edges between the parts is an obstruction to 2 disjoint spanning frees.
Thu(Cehman): This is the ONLY obstruction. dealing!!

Back to Case 2:
Show P1 wins:

- no 2 disjt spanimintrees, $\Rightarrow \exists$ partition ito p parts $w)<2(p-1)$ edges between parts.
- P2 can delete $\geqslant \frac{1}{2}$ of these -not enough left to connect up the parts.
Algorithmically? How to find the trees/ partition?

Spanning trees example of mattoid; (set system w/ "exchange property", generalizes set of bases of vector space)

2 dist. spanning trees example of matroid intersection which we will solve later in the course

Activity 3:

Massachusetts Institute of Technology
18.453: Combinatorial Optimization

Instructor: Cole Franks Notes: Michel Goemans and Web Brady February 15, 2021

Spin Glass

Consider the 7×7 grid drawn below, where each edge has been made thick (solid) or thin (dashed). Given an assigment of signs (+ or -) to the vertices of this grid, a thick edge is violated if the endpoints have two different signs. A thin edge is violated if the endpoints have identical signs. The goal is to find an assignment of signs which minimize the total number of violations in the grid.

As you'll probably realize, although finding a "good" assignment of signs might not be that difficult, providing a proof that your solution is optimal is in fact much more challenging (and a short proof exists for any instance).

Turns out: reduces to weighted perfect matching!
Idea: - draw on squares w/ odd \# thin edges. (called "frustrated placquettes"..)

- draw / across violated edges.

Note: pink edges form graph. G degree of frustrated placquettes in G is $\geqslant 1$.
Make Dual graph: each square is vertex, edgoo b/w neighboring squares, one vertex for outside.
eng. in blue

Turns our: min \#violations is just min \# edges of graph

- w/ odd degree on frustrated placquettes.
\therefore even degree on un frustrated.

Can assume it's just a union of edge disjoint chains,
cost is min cost matching in weighted graph G with
$V=$ Frosted placquettes
$\omega(u, v)=$ distance between u, v in dual graph.

How to get signs?

how do we know consistent?
because of parity of degree?

